Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Braz. j. microbiol ; 44(3): 879-882, July-Sept. 2013. tab
Article in English | LILACS | ID: lil-699783

ABSTRACT

Rabies is a zoonotic disease that affects all mammals and leads to more than 55,000 human deaths every year, caused by rabies virus (RABV) (Mononegavirales: Rhabdoviridae: Lyssavirus). Currently, human rabies treatment is based on the Milwaukee Protocol which consists on the induction of coma and massive antiviral therapy. The aim of this study was to assess the decrease in the titer of rabies virus both in vitro and in vivo using short-interfering RNAs. To this end, three siRNAs were used with antisense strands complementary to rabies virus nucleoprotein (N) mRNA. BHK-21 cells monolayers were infected with 1000 to 0.1 TCID50 of PV and after 2 hours the cells were transfected with each of tree RNAs in separate using Lipofectamine-2000. All three siRNAs reduced the titer of PV strain in a least 0.72 logTCID50/mL and no cytotoxic effect was observed in the monolayers treated with Lipofectamine-2000. Swiss albino mice infected with 10.000 to 1 LD of PV strain by the intracerebral route were also transfected after two hours of infection with a pool 3 siRNAs with Lipofectamine-2000 by the intracerebral route, resulting in a survival rate of 30% in mice inoculated with 100 LD50, while the same dose led to 100% mortality in untreated animals. Lipofectamine-2000 showed no toxic effect in control mice. These results suggest that intracerebral administration of siRNAs might be an effective antiviral strategy for rabies.


Subject(s)
Animals , Cricetinae , Mice , Antiviral Agents/metabolism , RNA Interference , RNA, Small Interfering/metabolism , Rabies virus/drug effects , Rabies virus/physiology , Rabies/drug therapy , Virus Replication/drug effects , Cell Line , Disease Models, Animal , Nucleocapsid Proteins/antagonists & inhibitors , RNA, Small Interfering/genetics , Survival Analysis , Viral Load , Virus Cultivation
2.
Pesqui. vet. bras ; 31(10): 922-925, out. 2011. tab
Article in English | LILACS | ID: lil-606669

ABSTRACT

Rabies is a neurological disease, but the rabies virus spread to several organs outside the central nervous system (CNS). The rabies virus antigen or RNA has been identified from the salivary glands, the lungs, the kidneys, the heart and the liver. This work aimed to identify the presence of the rabies virus in non-neuronal organs from naturally-infected vampire bats and to study the rabies virus in the salivary glands of healthy vampire bats. Out of the five bats that were positive for rabies in the CNS, by fluorescent antibody test (FAT), viral isolation in N2A cells and reverse transcription - polymerase chain reaction (RT-PCR), 100 percent (5/5) were positive for rabies in samples of the tongue and the heart, 80 percent (4/5) in the kidneys, 40 percent (2/5) in samples of the salivary glands and the lungs, and 20 percent (1/5) in the liver by RT-PCR test. All the nine bats that were negative for rabies in the CNS, by FAT, viral isolation and RT-PCR were negative for rabies in the salivary glands by RT-PCR test. Possible consequences for rabies epidemiology and pathogenesis are discussed in this work.


A raiva é uma doença neurológica, mas o vírus da raiva se dispersa para diversos órgãos fora do sistema nervoso central (SNC). Antígeno ou RNA do vírus da raiva já foram detectados em vários órgãos, tais como glândula salivar, pulmão, rim, coração e fígado. O presente trabalho teve como objetivo identificar a presença do vírus da raiva em órgãos não neuronais de morcegos hematófagos infectados naturalmente, e pesquisar a presença do vírus na glândula salivar de morcegos hematófagos sadios. Dos cinco morcegos positivos para a raiva no SNC pelas técnicas de imunofluorescência direta e isolamento viral em células N2A, 100 por cento (5/5) foram positivos para a raiva nas amostras de língua e coração, 80 por cento (4/5) no rim, 40 por cento (2/5) nas amostras de glândula salivar e pulmão, e 20 por cento (4/5) no fígado pe la técnica de RT-PCR. Todos os nove morcegos negativos no SNC, pela imunofluorescência e isolamento viral, foram negativos na glândula salivar pela RT-PCR. Possíveis consequências para a epidemiologia e patogênese da raiva são discutidas.


Subject(s)
Animals , Nucleoproteins/analysis , Chiroptera/virology , Rabies virus/ultrastructure , Hematology , Central Nervous System/virology
SELECTION OF CITATIONS
SEARCH DETAIL